
LEVERAGING
THE MICROSOFT

PLATFORM
FOR DEVOPS

PERFICIENT

2 / Leveraging the Microsoft Platform for DevOps

This white paper offers a deep dive into utilizing the
Microsoft platform for your organization’s DevOps
strategy. In addition to high-level definitions of DevOps
and its importance to successful businesses, you’ll learn
where your organization falls on the DevOps maturity
scale and best practices for executing on your DevOps
strategies on the Microsoft stack, including leveraging
Microsoft Azure and Visual Studio Team Services (VSTS).

WHAT IS DEVOPS?
DevOps is the collaboration of one or more individuals on
a project to optimize:

• ENVIRONMENT PROVISIONING

• ENVIRONMENT CONFIGURATION

• APPLICATION BUILD(S)

• APPLICATION DEPLOYMENT(S)

DevOps is about improving how software is built,
delivered, and operated by enabling IT departments to
reduce cycle times, optimize the use of IT resources,
and improve quality and availability. It is about increasing
the scope of agility, and it should be viewed as a team
undertaking. It requires teams to look at their full life cycle
investments.

At its core, DevOps enables better software development
and accelerates the last mile of delivery by focusing on:

1. Shortening of cycle times
DevOps practices enable organizations to shorten
cycle times and increase the traceability and auditability
of each release by improving transparency and
collaboration between development and operations
teams, and by eliminating waste in current manual
processes through automation.

2. Optimization of resources
DevOps practices enable organizations to efficiently
manage environments in a way that supports self-service
of environment provisioning/de-provisioning, controls
costs, and uses the provisioned resources effectively
while minimizing security risks.

3. Improving quality and availability
DevOps practices help to identify defects early in the
development cycle, identify the root cause of issues,
and quickly test and deploy fixes. DevOps also helps
organizations capture rich telemetry on app performance
and usage so teams can learn from the behavior of users
to drive future priorities and investments.

PERFICIENT

Leveraging the Microsoft Platform for DevOps / 3

WHY DEVOPS?
Successful organizations understand that competitive
advantage is fleeting, and to continuously innovate in an
era of digitized operations, they are required to write their
own software.

It is important to view the development of custom
applications not as a craft that happens independent of
the business, but as a strategic process that generates
value. This leads organizations to see development
from the perspective of a value chain where value does
not materialize when outputs are delivered through
requirements implementation, but when outcomes
are realized through the right requirements being
implemented, tested, and deployed into production. More
value delivered faster is, of course, better – hence the
focus on throughput/flow.

Focusing on organizational aspects such as people,
processes, and tools will help improve the flow of value
and eliminate waste. Ultimately, successful organizations
achieve the following processes and goals with DevOps:

1. ADAPT AND LEARN
Requirements are refined through a quick succession
of feedback loops. More conservative organizations do
this through process patterns, such as specification by
example, where the business, developers, and testers
collaborate closely on refining the specification and
continuously verifying (testing) that the implementation
is loyal to it. These specifications by example include
behavior-driven development, acceptance testing
development, or simply agile testing. This is all relevant
in the context of improving quality. More mature
organizations will perform these checks directly in
production, by observing user reaction to features. Adapt
and learn is also known as hypothesis-driven development
or build-measure-learn.

2. SHORTEN TOTAL CYCLE TIME
Successfully adapting and learning leads to a shortened
total cycle time. Knowledge – no matter how formal the
requirements and specification definition process – is
mostly tacit. For learning to take place in a meaningful
way, feedback loops are better when shorter. Shorter
cycle time is also directly related to quality. Shorter
cycles impose smaller batches of work, which in turn (as
researched and documented by queuing theory) also has a
positive, non-linear effect on quality. Quality in this context
is defined as structural and functional – valuable software
is more likely to manifest when executed in short cycles
rather than in long phases.

3. ELIMINATE WASTE
Short cycle times demand the removal of wasteful
activities. Spending days promoting code to the
acceptance testing environment is not conducive
to rapid feedback loops and shortened lead time to
value. Optimized use of resources (e.g., environment
provisioning) is a common attribute in successful and high-
performing organizations.

4. COLLABORATE
Successful organizations work better together by
building camaraderie and stronger working relationships.
Collaboration is created through adapt and learn, and
it contributes to shortening the time cycle and
eliminating waste.

5. REDUCE RISK
For shortened cycle times to be sustainable, safety is
necessary. Availability and resilience (or better, anti-
fragility) need to be key attributes of the product and the
process. Monitoring and diagnostic tools are typically
involved with this. More mature organizations will
purposely inject faults into their production environment to
practice detection, diagnosis, and remediation processes.
Practice makes perfect.

PERFICIENT

4 / Leveraging the Microsoft Platform for DevOps

LEVELS OF DEVOPS MATURITY
PATH TO MATURITY

As mentioned, DevOps is the collaboration of one or more
individuals on a project to optimize:

1. Environment provisioning
2. Environment configuration
3. Application build(s)
4. Application deployment(s)

Most teams that evolve DevOps over time do so in a very
predictable manner. Each of the four steps listed above
is likely to be repeated many times over, but at different
rates. For example, building an application happens much
more frequently than the other actions, so therefore it’s
logical to automate it first. The typical order in which
things are automated is as follows:

1. Application build(s)
2. Application deployment(s)
3. Environment configuration
4. Environment provisioning

LEVEL 0 - ARCHAIC

The most basic level, and therefore the least mature, is for
these steps to be performed manually. The following is an
example of the most basic level of DevOps.

A team has built an application and it needs to be
deployed to a new environment. A server administrator
manually provisions the servers needed for the new
environment. Once that has been completed, he
will configure the servers. A developer will build the
application (and possibly package it up). The developer will
then deploy the application, including databases, services,

and whatever else is needed. Once all of this is done,
one or more people will verify the application has been
deployed correctly.

If this was going to be a one-time process, there would be
nothing wrong with this approach. But when was the last
time a single environment was set up for an application
that was deployed only once and never deployed again?

LEVEL 1 - TRADITIONAL

To fully realize a Level 1 maturity, the automated build
system should have the following characteristics:

• Run on a non-developer machine
(preferably a server)

• Build on a trigger (i.e., check in), schedule, or both

• Execute unit tests

• Fail builds for multiple reasons
(not just a compiler error)

• Notify team of failed builds

• Ability to block check-ins under certain conditions

• Package the application to simplify the
deployment process

Leveraging the above ensures if source code is checked in
that does not compile, the team is notified sooner rather
than later so that the issue can be resolved (preferably by
the person who checked in the breaking change). It also
ensures that even if the code does compile, that the team
is notified if the updated source code causes a unit test
to fail. When automated builds are configured to run on
a trigger or a frequent schedule, it is often referred to as
continuous integration (CI) or continuous build (CB).

PERFICIENT

Leveraging the Microsoft Platform for DevOps / 5

In addition, this phase is usually where teams introduce
Infrastructure-as-Code.

LEVEL 3 - MODERN

This level of maturity introduces the concept of immutable
continuous delivery. This means you can blow away any
environment, at any time. Your automated deployments
will use containers, Infrastructure-as-Code, or some
combination of both to ensure the proper provisioning and
configuration of the environment.

Depending on the needs of the project, many teams will
not mature past Level 2. There may not be a need for it.
If there are a small, finite, number of environments, there
may not be an advantage to going any further. But, if
there will be N number of environments, then automating
the build-up and tear-down of environments becomes
appealing. Common reasons for this are:

• The application is installed on premises for each
production installation

• The development team may have a need for a new
environment for each feature branch

• The testing team may have a need to bring up and
tear down their own environments

Whatever the reason, if there will be several
environments then automating the configuration of the
environment will be a major time saver. Activities that may
need to be automated include:

• Installing/configuring software/services needed by
the application

• These are typically items that only need to be done
once every per environment (e.g. installing IIS)

• Initial creation of application assets, like databases

• Network configurations, like DNS entries

LEVEL 2 - MAINSTREAM

Manual deployments are rife with human error. Files could
be copied to the wrong directory, or even worse, to the
directory of a different environment. Database scripts may
not be executed in the correct order. Services may be
shut down for deployments and not restarted when the
deployment is done. The list goes on and on.

Automating deployments is usually the next area where a
DevOps team matures. The team has seen the benefits
of automated builds and realizes that there will be many
benefits to automated deployments, including:

• All steps are performed, and in the correct order,
every time

• Long-term time savings (which translates into cost
savings)

• Once configured, no special knowledge of
the system is needed in order to perform the
deployment

Not only are manual deployments fraught with human
error, but they are also very time consuming. Depending
on the complexity of the system, automating a
deployment can be an investment, but it is an investment
that will be paid back many times over the course of the
project.

Configuring automated deployments to run on a trigger
or a frequent schedule is often referred to as continuous
deployment (CD). There are at least two major benefits
of CD:

1. Developers can test functionality on a remote
environment (there are many reasons why code
may work locally, but not in other environments).

2. Non-developers can get a look at recent changes
without having to look over the developer’s
shoulder.

PERFICIENT

LEVEL 4 - BLEEDING EDGE

The final level in automation is using microservices to
further increase the deployment capabilities of your
immutable environments. The line between Level 3 and
Level 4 are easily blurred. However, Level 4 generally
refers to teams doing hundreds or even thousands of
deployments to production per day.

BEST PRACTICES
The set of DevOps best practices continues to evolve
and grow. Here are some of the best practices we have
established over many client engagements.

1. Automate your build process

2. Automate your deployment process

3. Execute builds via trigger or a frequent schedule
(at least once per hour)

4. Execute unit tests during builds and fail if any
of the tests fail

5. Support multiple environments

– Number of environments depends on the
needs of the application

– Development
– Test/QA
– Stage
– Production

6. Only deploy a build if it has already been deployed
to a lower environment (for example, a build should
not be deployed to test without being deployed to
development first)

Very few companies will achieve this level of automation.
In fact, this level of automation is not necessary for most.
These features require a considerable amount of effort
to set up, process, and implement. Only applications
that require hyper-deployment to production should be
considered as candidates. This is often only the case with
very large commercial, customer-facing applications.

0 21 3 4

7. Builds beyond the initial development environment
should be packaged, and that same package should be
used to deploy to the higher environments

– Do not rebuild the package for each environment

– Per-environment configurations are expected to be
made as the packages are deployed

8. Ensure your team is both autonomous and aligns with
your enterprise

9. Implement usage monitoring, telemetry collection, and
gain feedback from stakeholders to integrate and refine
back into your product backlog

10. Manage your technical debt

11. Conduct code reviews

12. Document your code

13. Use enterprise package management

14. Have a production-first mindset

15. Develop infrastructure-as-code practices

16. Use the cloud to your benefit (testing in production,
cloud test, automatic scaling, enterprise dev/test labs,
containers, microservices)

PERFICIENT

Leveraging the Microsoft Platform for DevOps / 7

ENVIRONMENT GUIDELINES
A common question asked is, “How do I set up my
environments, and how many do I need?” The old
paradigm was Dev > Int > Test/QA > Stage > Prod. There
were often five separate environments. Over the years,
Dev has gradually fallen to local machines and away from
full server farms.

Four server farms are still common: Dev/Int > Test/QA >
Stage > Prod. Some organizations have a hard time letting
go of old principles. When frameworks were different,
there were often complex integrations that needed to
be tested in a dev capacity working together before they
could move to the Test/QA environment. With today’s
frameworks, that’s not the case.

Read the diagram below starting at the bottom left.
When developing web applications for the cloud, it’s
easy to have a local dev machine or virtual machine (VM)
on your computer. Azure Enterprise Dev/Test Labs offer
attractive features for those multiple-server dev instance
requirements. Create templates and use quotas for
automatic shutdowns.

When the developer commits changes to the source
system, the automation begins across the gray arrow.
The Build Agent in Visual Studio Team Services executes
the build script tasks and runs the automated unit tests.

CLOUD SOLUTIONS

Upon successful completion of the tests, the package is
deployed to the Test/QA system.

At this point, the Test/QA environment is the first real
environment needed. You will have a single Azure App
Service instance and any storage, DB, or other services.
You can then do human testing, quality assurance, and
UAT in this environment. We recommend using Azure
Resource Groups to segment Test/QA from Prod. This
separation provides security and role-based access
permissions.

When testing is complete, you want to deploy to Stage.
In the Azure cloud, this is called a Deployment Slot.
Azure App Service provides up to five deployment slots
per deployed web app. You can deploy any number of
different versions of code to these slots. The slots are
swappable at any time. They stay “warm” and can literally
be changed over in seconds.

But the real power is with a feature called Testing In
Production. This feature enables you to set a percentage
of traffic to direct to Stage. You could direct, for instance,
5% of your traffic to the Stage slot, run your final
verifications, then once you’re completely satisfied, swap
the entire Stage slot to Production (and reduce the TIP
percentage back to zero). Of course, if there is a problem
at any point in this process, you have your live production
slot that you can you can revert back to.

PERFICIENT

8 / Leveraging the Microsoft Platform for DevOps

These features are extremely powerful and enable you to:

• Reduce the number of environments – only two
are needed in this model

• Automate build, integration, and testing tasks

• Implement more robust testing processes

• Better control versioning releases and package
management

The flow of the on-premises solutions is very much the
same as the cloud. The main differences are:

• On-premises Dev environments cannot use Azure
Dev/Test Labs. This may require an additional
server environment for developers.

• Deployment slots are not available. This means a
separate Stage environment is required.

As you can see, that’s three environments minimum, and
in some cases four, for an on-premises solution, which
will also result in a cost difference. We highly recommend
a cloud solution.

Please note that these are only recommendations. They
do not represent every situation for every organization.
There will always be exceptions.

INFRASTRUCTURE-AS-CODE
Azure Resource Manager (ARM) Templates provide
capabilities called Infrastructure-as-Code. This means
using code files to deploy resources to Azure. This can
be almost any type of Azure Resource: Virtual Machine,
Azure SQL instance, Storage Account, Search Service,
Redis Cache, Traffic Manager, etc.

ARM Templates, which are JSON, are an extremely
valuable component of the DevOps journey. They allow
you to build and configure your cloud infrastructure in a
repeatable fashion. You can build the Dev environment,
then copy/paste to start the QA environment, then to
the production environment, and so on. This allows us
to have different ARM Template versions to test unique
environment configurations. They also enable rapid
environment deployment for disaster recovery or system
restore scenarios.

ARM Templates reduce the burden of provisioning and
configuration of Azure resources on IT staff. Developers
can now manage their own environment configurations
completely within their own world – in code. Governance
can (and should) be applied using ARM Templates. Be sure
to include them as part of your managed code projects in
TFS/VSTS.

Creating ARM Templates is simple. Microsoft provides a
gallery of sample templates. Often, it is easiest to start
from a sample and customize from there. Another option
is to build out an environment in Azure manually and have
Azure generate the ARM template to use as a starting
point. Starting from a blank template is also an option.
Visual Studio provides a robust JSON editor to work with
the template. Once finished, deployment is easy with
Azure PowerShell or the CLI.

SOURCE CONTROL
The first step in automating a release pipeline is effective
source control management. We use both TFSVC and Git.
Your source code is always the first input into the pipeline
(see diagrams above). The build agents then compile that
code into artifacts that are used by the rest of the process.

ON-PREMISES SOLUTIONS

PERFICIENT

Leveraging the Microsoft Platform for DevOps / 9

Most developers have built some application at some
point in their career without source control. You store the
files locally on your hard drive. When you build your code,
it creates the appropriate files in the file system on your
computer. You then copy and paste those files onto a web
server. Remember how much time it took to manage that
process? Source control is the first fundamental step in
automating your DevOps pipeline.

Using VSTS for source control is very easy. Microsoft
is now the largest contributor to Git and have more
published Git repositories than anyone else. We have
been using Git for more than two years. Here’s a sample
of the flow we recommend:

CONTINUOUS BUILD/INTEGRATION
Continuous build (CB), or synonymously, continuous
integration (CI), is a core DevOps practice that we
recommend. It can be defined as the process by
which code is compiled every time it is checked-in or
committed. Rather than a developer initiating manual
builds, the system does it automatically. The goal is to
provide rapid feedback so that if a defect is introduced
into the code base, it can be identified and corrected as
soon as possible.

CI solves issues that many teams wrestle with on a daily
basis, such as: delivery delays, non-working/low quality
code, incomplete solutions, and rework. Each of these
issues introduces cost, both in terms of resources to
fix the issue and in time. Time-to-market is often a key
business driver that enables highly effective teams. CI
also helps increase quality. You know the latest build will
work, which helps reduce stress and uncertainty in
your teams.

Visual Studio Team Services (VSTS/TFS) has a rich feature
set for implementing CI. It provides hosted build agents
to start building your projects immediately, as well as a
flexible build system that allows you to install your own
agents. There are agents for Windows, OS X, and Linux.
The out-of-the-box options cover your most commonly
used tasks: Android, iOS, Maven, Jenkins, Gulp, Grunt,
Gradle, and more.

The first step in a CI implementation is creating the build
definition(s). Each application will likely only need one
or two build definitions. It is common to have a non-
optimized build. This can include compiled code, with
debug information to help aid in troubleshooting, as well
as un-minified resources (e.g. JavaScript and CSS files).
This build typically results in a direct deployment to the
development environment.

The second build definition is commonly used to produce
a deployment package optimized for production. This can
include compiled code (with optimizations), as well as
JavaScript and CSS resources that have been bundled and
minified to provide the end-user with a better browsing
experience. This build does not result in a deployment
being performed, but rather the creation of a package
which includes all of the assets of the build needed for
a deployment and makes those assets available to be
deployed by another process.

PERFICIENT

10 / Leveraging the Microsoft Platform for DevOps

The next step is to add your various build steps and
configure each one. This could be a NuGet restore, Azure
PowerShell script, MSBuild, or a Visual Studio Test (see
below). Once all the tasks are configured and ordered, you
will configure the rest of the build options for repositories,
variables, triggers, and retention.

Once your definitions are built, you can manage access to
your builds by defining groups and granting permissions
for viewing, editing, creating, and queuing builds. You can
also manage and share build resources across projects. In
addition, you can control access to build resources (pools
and queues) and audit changes to your builds.

Finally, the VSTS CI tools provide diagnostics, automated
alerts, historical changes, and output logs to troubleshoot
issues and audit the changes of your build definitions
over time. This enterprise-ready toolset is essential to any
DevOps solution.

CONTINUOUS TEST
Continuous test is exactly as it sounds: each time code is
compiled, the system will run automated unit tests. This
is an important step in the DevOps process. It enables
you to find problems in code earlier and review the results
immediately to begin resolving any errors. Microsoft
supports a number of testing platforms and frameworks:
NUnit, XUnit, Selenium, Java, Maven, Node.JS, Gradle,
and MSTest. These tools work for applications hosted
both in the cloud and on-premises.

Continuous test is quite easy to get started and set up.
First, check-in your solution – including your test projects
– to Visual Studio Team Services. Next, create a build
definition that includes a task for Visual Studio Test.
Once configured, tests will execute every time a build is
initiated. You can go to the Tests tab to see the results

summary. Test results between the current build and the
last one can also be compared. Here you’ll find changes in
new, failed, and passed tests, how long these tests took
to run, how long these tests have been failing, and more.
You can organize the test results and open bugs directly
for failed tests.

Microsoft provides a number of testing tools and services
that include performance testing, exploratory testing, load
testing, acceptance testing, and automation testing. You
might not enable all of these continuously in a DevOps
scenario. In fact, you are usually only going to automate
unit tests. However, it is important to know that each of
these exists as part of the testing capabilities in the Visual
Studio platform.

CONTINUOUS DEPLOYMENT
Continuous deployment (CD) happens after a continuous
integration (CI) has successfully executed (i.e., no build
errors and no failed tests). CI and CD typically happen
within the same process. CD is not right for everyone or
every project.

CD relies heavily on automation of all tasks and steps
in a delivery pipeline. The initial tasks of setting up
the automation can be daunting, but it will save a lot
of headaches and effort going forward. It is highly
recommended that developers not consider their task(s)
to be complete until they have verified the functionality
in another environment (i.e., not their local environment).
There are any number of reasons why the source code
will execute as expected locally, but fail to execute as
expected in another environment. Requiring the team to
validate in another environment ensures that all resources
needed are persisted in source control and that nothing
has been hard-coded to a local machine.

PERFICIENT

Leveraging the Microsoft Platform for DevOps / 11

The environment used for CD should be considered
unstable. It is not recommended that anyone outside
of the development team use this environment. There
are two primary reasons for this. First, a build can be
triggered at any time, and the behavior of the environment
can be unpredictable at that time. Second, even if a
build successfully compiles and passes all tests, there
still exists a possibility that it has a major issue and the
site could be unusable until a fix is committed to source
control.

PACKAGING AND RELEASE
MANAGEMENT
Many software projects today rely on package managers
(i.e. NuGet, npm) to successfully build. Others rely on
packages as an output of the build or release process to
share components across teams or make available as an
open source component. Visual Studio Team Services

provides a great set of features for effectively managing
these packages.

• Privately hosted packages – NuGet is the first
supported package type, but the service is built to
support any programming language or platform,
and can contain artifacts from your own build
server, NuGet.org, npmjs.com, GitHub, and more

• Consistent access to components needed by your
build

• Enterprise authentication to manage permissions
on who is allowed access to those components

• Seamless integration with build and release
management tools

• A friction-free way to bring in an open source
component to your enterprise

• Discovery and search of packages across the
enterprise

PERFICIENT

12 / Leveraging the Microsoft Platform for DevOps

Release management helps you automate the
deployment and testing of your software in multiple
environments. You can either fully automate the delivery
of your software all the way to production, or set up
semi-automated processes with approvals and on-demand
deployments.

Release management runs the following steps as part of
every deployment:

1. Pre-deployment approval: When a new deployment
request is triggered, release management checks
whether a pre-deployment approval is required
before deploying a release to an environment. If it
is required, it sends out email notifications to the
appropriate approvers.

2. Queue deployment job: Release management
schedules the deployment job on an available
automation agent. An agent is a piece of software
that is capable of running tasks in the deployment.

3. Agent selection: An automation agent picks up the
job. The agents for release management are exactly
the same as those that run your builds in Team

Services and Team Foundation Server. A release
definition can contain settings to select an appropriate
agent at runtime.

4. Download artifacts: The agent downloads all the
artifacts specified in that release, provided you have
not opted to skip the download. The agent currently
understands two types of artifacts: Team Build
artifacts and Jenkins artifacts.

5. Run the deployment tasks: The agent then runs all
the tasks in the deployment job to deploy the app to
the target servers for an environment.

6. Generate progress logs: The agent creates detailed
logs for each step while running the deployment, and
pushes these logs back to Team Services or Team
Foundation Server.

7. Post-deployment approval: When deployment to
an environment is complete, release management
checks to see if there is a post-deployment approval
required for that environment. If no approval is
required, or upon completion of a required approval,
release management proceeds to trigger deployment
to the next environment.

PERFICIENT

Leveraging the Microsoft Platform for DevOps / 13

CLIENT SUCCESS STORY

LEADING CORPORATE
INSURANCE BROKER
Corporate insurance is a sophisticated and challenging
business. Not only does this leading corporate insurance
broker help its clients find the best insurance plans, but
it also advises them on selecting the optimal business
development strategies and set risk-management
objectives uniquely suited to their long-term objectives.

To streamline this process, the organization asked us to
build a custom data-gathering and reporting tool to be used
by account managers when developing client strategies.

We used Microsoft Visual Studio Team Services to keep
the software development process agile and fast-paced.
From requirements management to source control,
continuous integration, and deployment, Visual Studio Team
Services supported the distributed development team
and allowed the project to be delivered on time and with
consistent quality.

ABOUT PERFICIENT
Perficient is the leading digital transformation consulting firm serving
Global 2000® and enterprise customers throughout North America.
With unparalleled information technology, management consulting and
creative capabilities, Perficient and its Perficient Digital agency deliver
vision, execution and value with outstanding digital experience, business
optimization and industry solutions.

PERFICIENT.COM/BLOGS

TWITTER.COM/PERFICIENT

FACEBOOK.COM/PERFICIENT

PERFICIENT.COM/GUIDES

WHY PERFICIENT
Recognized by Microsoft as a gold-certified partner and
one of its premier national solution providers, we have
built a successful business on Microsoft’s cloud platforms,
migrating more than 3.5 million users to Microsoft’s Office
365 service. We continue our investments in the cloud by
focusing on Microsoft Azure, Skype for Business Online,
Yammer, SharePoint Online, Xamarin, and Sitecore.

We were honored to be named Microsoft’s East Region
NSP Partner of the Year and Cloud Partner of the Year,
Central Region NSP Partner of the Year, and West Region
NSP Partner of the Year in 2016. We will show you how to
use Microsoft platforms, products, and best practices to
connect employees to key communications and data, and
especially to one another.

• Migrated 3.5 million users to the Microsoft Cloud

• Gold certified in all MPN Cloud Competencies

• 3,300+ engagements

• 700+ clients

• 350+ Microsoft-focused consultants

• 40+ Azure certified consultants

Perficient’s Cloud Platform Practice encompasses our
work across all four Microsoft Azure platform pillars –
Cloud Development, Cloud Infrastructure, Cloud Security,
and Cloud Data. Contact us to find out how our certified
Azure experts can help you transform your digital cloud.

AUTHORS
JOE CRABTREE
Cloud Platform Practice Director

WIL BLOODWORTH
Cloud Dev Platform Practice Architect

BRIAN BALL
Cloud Dev Platform Practice Architect

